Ein Stern befindet sich in ein einem stabilen Zustand, wenn sich die Kräfte in seinem Inneren und die Gravitationskraft ausgleichen.
Das Material eines Sterns zieht sich aufgrund der Gravitation gegenseitig an und verdichtet sich in Richtung des Massezentrums. Auf einen Stern wirkt sein eigenes Gravitationspotenzial wie eine Kraft von außen. Es entsteht ein Gravitationsdruck \(\rho_{grav}\).
Diese Energie wird einerseits bei thermonuklearen Fusionen in Form von Strahlung freigesetzt, andererseits herrscht aufgrund der Temperaturen im Inneren ein hoher Gasdruck. Wenn die erzeugte Strahlung von einem Teilchen emittiert, absorbiert oder reflektiert wird, entsteht ein Strahlungsdruck \(\rho_{St}\). Der Gasdruck wird von \(\rho_{gas}\) beschrieben.
Zudem rotieren Sterne, womit eine ausgezeichnete Drehachse vorhanden ist. Die Konsequenz der Rotation ist eine Zentrifugalkraft – sie bewirkt, dass sich die Teilchen in Äquatornähe ausweiten und einen Zentrifugaldruck \(\rho_{zentri}\) nach außen erzeugen.
Insgesamt wirken also der Strahlungsdruck, der Gasdruck und die Zentrifugalkraft dem Gravitationsdruck entgegen.
Gleichen sich der nach innen gerichtete Druck mit den nach außen gerichteten Drücken aus, spricht man vom hydrostatischen Gleichgewicht.
Der Kräfteausgleich kann mit den oben genannten Drücken wie folgt beschrieben werden: \(\mathrm{\rho}_{grav} = \mathrm{\rho}_{St} + \mathrm{\rho}_{gas} + \mathrm{\rho}_{zentr}\)
Der Bethe-Weizsäcker-Zyklus oder CNO-Zyklus fusioniert Wasserstoff zu Helium und tritt vor allem in massereichen Sternen auf.
Die Energiequelle, die einen Stern im Gleichgewicht hält, ist die stellare Kernfusion. Sterne der Hauptreihe gewinnen ihre Energie überwiegend aus der Fusion von Wasserstoff zu Helium.
In der Astrophysik werden Sterne anhand ihres Lichts analysiert und charakterisiert. Das wichtigste Hilfsmittel hierfür ist die Spektroskopie.